殘余應(yīng)力值(kg/mm2)滲碳后880-900度鹽浴加熱,260度等溫40分鐘-65
滲碳后880-900度鹽浴加熱淬火,260度等溫90分鐘-18
滲碳后880-900度鹽浴加熱,260度等溫40分鐘,260度回火90分鐘-38
從表1的測試結(jié)果可以看出等溫淬火比通常的淬火低溫回火工藝具有更高的表面殘余壓應(yīng)力。等溫淬火后即使進行低溫回火,其表面殘余壓應(yīng)力,也比淬火后低溫回火高。因此可以得出這樣一個結(jié)論,即滲碳后等溫淬火比通常的滲碳淬火低溫回火獲得的表面殘余壓應(yīng)力更高,從表面層殘余壓應(yīng)力對疲勞抗力的有利影響的觀點來看,滲碳等溫淬火工藝是提高滲碳件疲勞強度的有效方法。滲碳淬火工藝為什么能獲得表層殘余壓應(yīng)力?滲碳等溫淬火為什么能獲得更大的表層殘余壓應(yīng)力?其主要原因有兩個:一個原因是表層高碳馬氏體比容比心部低碳馬氏體的比容大,淬火后表層體積膨脹大,而心部低碳馬氏體體積膨脹小,制約了表層的自由膨脹,造成表層受壓心部受拉的應(yīng)力狀態(tài)。而另一個更重要的原因是高碳過冷奧氏體向馬氏體轉(zhuǎn)變的開始轉(zhuǎn)變溫度(Ms),比心部含碳量低的過冷奧氏體向馬氏體轉(zhuǎn)變的開始溫度(Ms)低。這就是說在淬火過程中往往是心部首先產(chǎn)生馬氏體轉(zhuǎn)變引起心部體積膨脹,并獲得強化,而表面還末冷卻到其對應(yīng)的馬氏體開始轉(zhuǎn)變點(Ms),故仍處于過冷奧氏體狀態(tài),具有良好的塑性,不會對心部馬氏體轉(zhuǎn)變的體積膨脹起嚴重的壓制作用。隨著淬火冷卻溫度的不斷下降使表層溫度降到該處的(Ms)點以下,表層產(chǎn)生馬氏體轉(zhuǎn)變,引起表層體積的膨脹。但心部此時早已轉(zhuǎn)變?yōu)轳R氏體而強化,所以心部對表層的體積膨脹將會起很大的壓制作用,使表層獲得殘余壓應(yīng)力。而在滲碳后進行等溫淬火時,當(dāng)?shù)葴販囟仍跐B碳層的馬氏體開始轉(zhuǎn)變溫度(Ms)以上,心部的馬氏體開始轉(zhuǎn)變溫度(Ms)點以下的適當(dāng)溫度等溫淬火,比連續(xù)冷卻淬火更能保證這種轉(zhuǎn)變的先后順序的特點(即保證表層馬氏體轉(zhuǎn)變僅僅產(chǎn)生于等溫后的冷卻過程中)。當(dāng)然滲碳后等溫淬火的等溫溫度和等溫時間對表層殘余應(yīng)力的大小有很大的影響。有人對35SiMn2MoV鋼試樣滲碳后在260℃和320℃等溫40分鐘后的表面殘余應(yīng)力進行過測試,其結(jié)果如表2。 由表2可知在260℃行動等溫比在320℃等溫的表面殘余應(yīng)力要高出一倍多,
可見表面殘余應(yīng)力狀態(tài)對滲碳等溫淬火的等溫溫度是很敏感的。不僅等溫溫度對表面殘余壓應(yīng)力狀態(tài)有影響,而且等溫時間也有一定的影響。有人對35SiMn2V鋼在310℃等溫2分鐘,10分鐘,90分鐘的殘余應(yīng)力進行過測試。2分鐘后殘余壓應(yīng)力為-20kg/mm,10分鐘后為-60kg/mm,60分鐘后為-80kg/mm,60分鐘后再延長等溫時間殘余應(yīng)力變化不大。
從上面的討論表明,滲碳層與心部馬氏體轉(zhuǎn)變的先后順序?qū)Ρ韺託堄鄳?yīng)力的大小有重要影響。滲碳后的等溫淬火對進一步提高零件的疲勞壽命具有普遍意義。此外能降低表層馬氏體開始轉(zhuǎn)變溫度(Ms)點的表面化學(xué)熱處理如滲碳、氮化、氰化等都為造成表層殘余壓應(yīng)力提供了條件,如高碳鋼的氮化--淬火工藝,由于表層,氮含量的提高而降低了表層馬氏體開始轉(zhuǎn)變點(Ms),淬火后獲得了較高的表層殘余壓應(yīng)力使疲勞壽命得到提高。又如氰化工藝往往比滲碳具有更高的疲勞強度和使用壽命,也是因氮含量的增加可獲得比滲碳更高的表面殘余壓應(yīng)力之故。此外,從獲得表層殘余壓應(yīng)力的合理分布的觀點來看,單一的表面強化工藝不容易獲得理想的表層殘余壓應(yīng)力分布,而復(fù)合的表面強化工藝則可以有效的改善表層殘余應(yīng)力的分布。如滲碳淬火的殘余應(yīng)力一般在表面壓應(yīng)力較低,最大壓應(yīng)力則出現(xiàn)在離表面一定深度處,而且殘余壓力層較厚。氮化后的表面殘余壓應(yīng)力很高,但殘余壓應(yīng)力層很簿,往里急劇下降。如果采用滲碳--氮化復(fù)合強化工藝,則可獲得更合理的應(yīng)力分布狀態(tài)。因此表面復(fù)合強化工藝,如滲碳--氮化,滲碳--高頻淬火等,都是值得重視的方向。